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1. Abstract
Early detection of microthrombi circulating in 

the blood is required for prediction of venous 
thrombosis and comprehensive vascular function 
tests. The echoes from thrombus and alignment of 
blood cell may be observed as hyperechoic region 
(non-speckle component) in blood cell echo (speckle 
component), and can be identified by thresholding 
the envelope amplitude 1). However, it is difficult to 
discriminate with non-speckle and speckle 
components when the change in brightness becomes 
obscure. One of the solutions is deep learning to 
improve the accuracy of a segmentation task of non-
speckle components in blood echo. In our previous 
study, a learned model was constructed based on in 
silico data 2). However, the learned model overfitted
to the features of in silico data, and the 
incompatibility with the experimental data was a 
problem. In this study, we newly construct a method 
incorporating with adversarial learning and fine 
tuning, and aim to create a robust learned model that 
can also adapt to experimental data.

2. Training Data
Training data was supervised in silico data and 

unsupervised experimental data.

2.1. In Silico Data
Numerical simulation using Field II 3,4) was 

performed to simulate blood echoes containing non-
speckle in the transmission and reception sound field 
of a 7.5 MHz linear probe and to create data with 

different number densities by increasing the number 
density of non-speckle components in stages. 
Scatterers imitating speckle and non-speckle 
components were randomly arranged at 30 
points/mm3 and at 0 25 points/mm3, respectively.
Based on our previous study, the scattering intensity 
ratio of speckle and non-speckle components was the 
minimum condition (speckle: non-speckle = 1:5) that 
shows stable discrimination accuracy 2). Regarding 
the ground truth, the region of the maximum half 
width of envelope amplitude was set as 1, and the 
other region was set as 0, considering the point
spread function.

2.2. Experimental Data
We measured the experimental data of blood 

mimicking fluid that contained non-speckle
components in the speckle component such as in 
silico data. This fluid was made from nylon particles 
of a diameter of 40 μm (non-speckle component) 
with concentrations of 0 to 0.09% and particles of 10 
μm with a concentration of 0.5% (speckle 
component). The number density of non-speckle 
components was about 0 25 points/mm3, and the 
scattering intensity ratio (speckle: non-speckle) was
assumed to be 1:10 from the theoretical formula.

3. Training Method
Fig. 1 shows an overview of the proposed 

learning method. U-Net 5) was used for the auto 
encoder (conventional method) and migrated with an 
adversarial learning in two phases (proposed 

method): auto encoder and discriminator 6).
Fig. 1  Overview of the proposed learning method.
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The loss function in auto encoder was updated 
with deep learning parameters to increase the 
discriminator loss. On the other hand, the 
discriminator updated the parameters of the deep 
learning model so that the outputs of the 
segmentation result by the auto encoder could be 
accurately discriminated whether they were in silico 
or experimental data.

The adversarial learning strategy was 
introduced in the proposed method to suppress the
misclassification of measured data while 
maintaining the segmentation accuracy of in silico 
data. In addition to the adversarial learning strategy, 
a fine-tuning method was performed using weights 
learned in advance using only in silico data as initial 
values. We compared the training strategy using four 
fine-tuning methods, i.e., proposed methods (a)-(d) 
shown in Fig. 2.

4. Results
Fig. 3 shows the results of the non-speckle 

detection area ratio at each number density in in 
silico and experimental data. The blue dashed line of 
in Fig. 3 (in silico) was evaluated by the conventional 
method. Other lines represent the experimental data
evaluated by the conventional and proposed methods 
[(a)-(d)]. The detection ratio of in silico data was 
similar to that of experimental data using the 
proposed methods [(a)-(d)] compared to the 
conventional method. Furthermore, the fluctuation 
of the detection ratio in the proposed methods was 
more suppressed than the conventional method.
Table I shows the result of the evaluation of each 
deep learning method. In the proposed method, the 
intersection over union (IoU) score of in silico data 
decreased by about 20%, but the error of the 
detection rate between in silico and experimental 
data was reduced against the conventional method.
Since the results in the proposed methods [(a)-(d)]
were comparable, it was considered that the 
minimum fine-tuning such as the proposed method 
[(d)] was enough to construct the model for this 
classification.

5. Conclusion
In this study, the adversarial learning method 

including experimental data (unknown ground truth)
was investigated in the in silico-based model for 

segmentation of non-speckle components in blood 
echoes. As a result, the excessive detection of non-
speckle components in the experimental data could 
be suppressed by the proposed strategy, and it could 
be adapted with the minimum fine-tuning. In future
works, we will evaluate in vivo blood data.
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Fig. 2  Four fine-tuning methods.

Table. I Evaluation result in each deep learning 
method. IoU score was calculated from in silico dat

 a, and 
mean absolute error of detection ratio was 
computed between in silico and experimental data.

Fig. 3  Results of the non-speckle detection ratio in
each number density.


