Relationship between Displacement Current and Magnetic Field from the Viewpoint of Roentgen Current in Dielectric and Piezoelectric Materials

Michio Ohki (Natl. Def. Acad. of Japan)

1. Introduction

There is ongoing debate as to whether an electric displacement current J_d can generate a magnetic field H or not¹). Although Feynman points out the ambiguity of whether J_d or a conduction current J generates H^{2} , some researchers assert the followings: (1) The electric displacement current derived from a longitudinal electric field $E_{(L)}$, $J_{d(L)} = \varepsilon \frac{\partial E_{(L)}}{\partial t}$, cannot generate H, since $E_{(L)}$ is irrotational (conservative) as $\nabla \times E_{(L)} = 0$. (For example, a point charge generates an irrotational electric field, and so does its superposition, which cannot generate H); (2) Only Jcan be regarded as a source of H, and there is no cause-effect relations between J_d and H. (For example, H in a capacitor is caused by J, not by J_d .)

However, the above assertions have some problems. In this study, the disproof against the above (1) and (2) is discussed by considering a dielectric or piezoelectric material that moves with a constant velocity <u>relatively</u> against an (inhomogeneous) electric field, which accompanies a Roentgen current J_R as well as J_d . The consideration is based on Einstein's special relativity in inertial frames of reference.

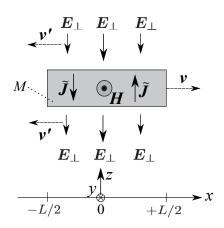


Fig. 1: Relative movement between dielectric or piezoelectric body M (moving with velocity v) and spatial distribution of electric field E_{\perp} (moving with velocity v'). $\tilde{J} = J_{\rm d} + J_{\rm R}$, where $J_{\rm d}$ is a displacement current in a narrow sense, and $J_{\rm R}$ is a Roentgen current.

2. Generation of magnetic field

Figure 1 shows relative movement between an inhomogeneous spatial distribution of electric field E_{\perp} and a dielectric or piezoelectric body M. Two relative cases are considered: (A) The velocity of M is v, while E_{\perp} is stationary; (B) The velocity of E_{\perp} is v' that is inverse of v in the case of (A), while M is stationary. Here E_{\perp} is the component of an external field E perpendicular to v:

$$\boldsymbol{E} = \boldsymbol{E}_{\perp} + \boldsymbol{E}_{\parallel} \qquad (\boldsymbol{E}_{\perp} \perp \boldsymbol{v}), \tag{1}$$

and we assume that E is generated by superposition of point charges; that is,

$$\boldsymbol{\nabla} \times \boldsymbol{E} = \boldsymbol{0}. \tag{2}$$

In the case of (A), the movement of M with v in the environment of an electric flux density D caused by E generates the following magnetic field H in M:

$$\boldsymbol{H} = -\boldsymbol{v} \times \boldsymbol{D},\tag{3}$$

due to Einstein's special relativity ($|v| \ll c$ (light speed)), which accompanies a Roentgen current J_R :

$$\boldsymbol{J}_{\mathrm{R}} = -\boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{D}) = (\boldsymbol{v} \cdot \boldsymbol{\nabla})\boldsymbol{D}, \qquad (4)$$

where $\nabla \cdot D = 0$ and $\nabla \cdot v = 0$ are assumed in an inertia system.

(Roentgen's original experiment was performed in a rotational (non-inertia) system³⁾, as well as Eichenwald's experiment and Wilson's one that followed, to which the special relativity cannot be applied⁴⁾. There has been some confusion and misunderstanding on this point.)

E-mail: michio_ohki@ieee.org

In addition, in a material with piezoelectricity, although E causes static stress and strain distribution in M, the response of D to v is the same as in the case of non-piezoelectric materials.

In general, from eqs. (1) and (2),

$$\boldsymbol{\nabla} \times \boldsymbol{E}_{\perp} = -\boldsymbol{\nabla} \times \boldsymbol{E}_{\parallel} \neq \boldsymbol{0}, \tag{5}$$

unless $\mathbf{\nabla} \times \mathbf{E}_{\parallel} = \mathbf{0}$; then \mathbf{E}_{\perp} does not contribute to the cancel of magnetic field, even though $\nabla \times E = 0$. The existence of v causes H, while H cannot cause v, regarding the cause-effect relationship.

The case of (B) is only a relative replica of the case of (A); therefore, the effect of the former is exactly the same as that of the latter. The time variation of *D* in *M* accompanied by $\boldsymbol{v'}$, $\frac{\partial \boldsymbol{D}}{\partial t} (= \boldsymbol{J}_{\mathrm{d}})$, generates \boldsymbol{H} , while H cannot cause v', and the cause-effect relationship is clear.

Ampere's law satisfied in M can be expressed as

$$\nabla \times H = \tilde{J} = J_{\rm d} + J_{\rm R} = \frac{\partial D}{\partial t} - \nabla \times (v \times D).$$
 (6)

3. Discussion on retarded potentials

In the configuration shown in Fig. 1, the movement of E_{\perp} with velocity v' in the case of (B) is actually originated from the movement of external point charges (charge density ρ), which implies the existence of a conduction current $J = \rho v'$ there. Therefore, the following interpretation is also possible: (1) J outside M is a primary source for H in M; (2) The effect of J propagates with the finite light velocity according to the special relativity, and generates J_d in M in a retarded manner as a secondary source of *H*.

The difference between the primary and secondary sources appears as

$$\nabla \times \boldsymbol{H} \neq \boldsymbol{J}, \quad \nabla \times \boldsymbol{H} = \boldsymbol{J}_{\mathrm{d}},$$
(7)

in M, and only J_d should be regarded as the source of H from Faraday-Maxwell's viewpoint of near field interaction. The effect of distant J propagates as retarded potentials: the retardation of both of a vector and a scalar potential, A and ϕ , respectively.

The \boldsymbol{A} generated by \boldsymbol{J} outside M satisfies eq. (8) at a position in M, where c is observed:

$$\nabla^2 \boldsymbol{A} = \frac{1}{c^2} \frac{\partial^2 \boldsymbol{A}}{\partial t^2}.$$
 (8)

In eq. (8), Lorentz's gauge condition given by eq. (9) is 4) G. Pellegrini and A. Swift: Am. J. Phys. **63** (1995) 694.

assumed, which guarantees the propagation of both potentials with c:

$$\nabla \cdot \boldsymbol{A} = -\frac{1}{c^2} \frac{\partial \phi}{\partial t} \tag{9}$$

By subtracting $\nabla(\nabla \cdot A)$ from both sides of eq. (8),

$$-\boldsymbol{\nabla}^2 \boldsymbol{A} + \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A}) = -\frac{1}{c^2} \frac{\partial^2 \boldsymbol{A}}{\partial t^2} + \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A}). \quad (10)$$

The left-hand side of eq. (10) equals

$$-\nabla^2 A + \nabla (\nabla \cdot A) = \nabla \times (\nabla \times A) = \mu \nabla \times H.$$
(11)

The first term in the right-hand side of eq. (10) is

$$-\frac{1}{c^2}\frac{\partial^2 \boldsymbol{A}}{\partial t^2} = -\frac{1}{c^2}\frac{\partial^2 (\boldsymbol{A}_{(\mathrm{L})} + \boldsymbol{A}_{(\mathrm{T})})}{\partial t^2},\qquad(12)$$

where $\nabla \times A_{(L)} = \mathbf{0}$ (longitudinal) and $\nabla \cdot A_{(T)} = 0$ (transverse). Since E can be decomposed into

$$\boldsymbol{E}_{(\mathrm{L})} + \boldsymbol{E}_{(\mathrm{T})} = \left(-\boldsymbol{\nabla}\phi - \frac{\partial\boldsymbol{A}_{(\mathrm{L})}}{\partial t}\right) + \left(-\frac{\partial\boldsymbol{A}_{(\mathrm{T})}}{\partial t}\right), \quad (13)$$

the second term in the right-hand side of eq. (10) is

$$\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\boldsymbol{A}) = \boldsymbol{\nabla}\left(\frac{-1}{c^2}\frac{\partial\phi}{\partial t}\right) = \frac{1}{c^2}\frac{\partial}{\partial t}\left(\boldsymbol{E}_{(\mathrm{L})} + \frac{\partial\boldsymbol{A}_{(\mathrm{L})}}{\partial t}\right).$$
(14)

By summing up eqs. (12) and (14) with $\varepsilon \mu = 1/c^2$, the right-hand side of eq. (10) is turned into

$$\frac{1}{c^2}\frac{\partial}{\partial t}\left(\boldsymbol{E}_{(\mathrm{L})} + \boldsymbol{E}_{(\mathrm{T})}\right) = \mu(\boldsymbol{J}_{\mathrm{d}(\mathrm{L})} + \boldsymbol{J}_{\mathrm{d}(\mathrm{T})}).$$
(15)

Finally, eq. (10), using eqs. (11) and (15), leads to

$$\boldsymbol{\nabla} \times \boldsymbol{H} = \boldsymbol{J}_{\mathrm{d}(\mathrm{L})} + \boldsymbol{J}_{\mathrm{d}(\mathrm{T})} = \boldsymbol{J}_{\mathrm{d}}.$$
 (16)

Both of $J_{d(L)}$ and $J_{d(T)}$ act as secondary sources of H, and there is no reason to exclude $J_{\mathrm{d(L)}}$ from the viewpoint of special relativity.

Acknowledgments

The author appreciates useful discussion with Dr. Kiyoshi Maruyama with regard to the displacement current.

References

1) M. Kitano: Daigaku no Butsuri Kyoiku (Physical Education of University), Phys. Soc. of Japan, 27 (2021) 22.

2) R. P. Feynman, R. B. Leighton, and M. Sands: The Feynman Lectures on Physics, Vol. 2, Sec. 18-2.

3) W. C. Röntgen: Annalen der Physik, 271 (1888) Issue 10, p. 264-270.