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There is ongoing debate as to whether an electric dis-
placement current Jd can generate a magnetic field
H or not1). Although Feynman points out the ambi-
guity of whether Jd or a conduction current J gen-
erates H2), some researchers assert the followings:
(1) The electric displacement current derived from a
longitudinal electric field E(L), Jd(L) = ε

∂E(L)
∂t , cannot

generate H, since E(L) is irrotational (conservative)
as ∇ × E(L) = 0. (For example, a point charge gen-
erates an irrotational electric field, and so does its
superposition, which cannot generateH); (2) Only J
can be regarded as a source of H, and there is no
cause-effect relations between Jd and H. (For exam-
ple, H in a capacitor is caused by J , not by Jd.)
However, the above assertions have some prob-

lems. In this study, the disproof against the above
(1) and (2) is discussed by considering a dielectric or
piezoelectric material that moves with a constant ve-
locity relatively against an (inhomogeneous) electric
field, which accompanies a Roentgen current JR as
well as Jd. The consideration is based on Einstein’s
special relativity in inertial frames of reference.
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Fig. 1: Relative movement between dielectric or piezo-
electric body M (moving with velocity v) and spatial dis-
tribution of electric field E⊥ (moving with velocity v′).
J̃ = Jd + JR, where Jd is a displacement current in a nar-
row sense, and JR is a Roentgen current.

Figure 1 shows relative movement between an inho-
mogeneous spatial distribution of electric field E⊥
and a dielectric or piezoelectric body M . Two rel-
ative cases are considered: (A) The velocity of M is
v, while E⊥ is stationary; (B) The velocity of E⊥ is
v′ that is inverse of v in the case of (A), while M is
stationary. Here E⊥ is the component of an external
field E perpendicular to v:

E = E⊥ +E‖ (E⊥ ⊥ v), (1)

and we assume that E is generated by superposition
of point charges; that is,

∇×E = 0. (2)

In the case of (A), the movement of M with v in
the environment of an electric flux density D caused
by E generates the following magnetic field H in M :

H = −v ×D, (3)

due to Einstein’s special relativity (|v| � c (light
speed)), which accompanies a Roentgen current JR:

JR = −∇× (v ×D) = (v ·∇)D, (4)

where ∇ · D = 0 and ∇ · v = 0 are assumed in an
inertia system.
(Roentgen’s original experiment was performed in

a rotational (non-inertia) system3), as well as Eichen-
wald’s experiment and Wilson’s one that followed,
to which the special relativity cannot be applied4).
There has been some confusion and misunderstand-
ing on this point.)
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In addition, in a material with piezoelectricity, al-
though E causes static stress and strain distribution
in M , the response of D to v is the same as in the
case of non-piezoelectric materials.
In general, from eqs. (1) and (2),

∇×E⊥ = −∇×E‖ �= 0, (5)

unless ∇ × E‖ = 0; then E⊥ does not contribute to
the cancel of magnetic field, even though∇×E = 0.
The existence of v causes H, while H cannot cause
v, regarding the cause-effect relationship.
The case of (B) is only a relative replica of the case

of (A); therefore, the effect of the former is exactly the
same as that of the latter. The time variation of D in
M accompanied by v′, ∂D∂t (= Jd), generatesH, while
H cannot cause v′, and the cause-effect relationship
is clear.
Ampere’s law satisfied in M can be expressed as

∇×H = J̃ = Jd + JR =
∂D

∂t
−∇× (v ×D). (6)

In the configuration shown in Fig. 1, the movement of
E⊥ with velocity v′ in the case of (B) is actually orig-
inated from the movement of external point charges
(charge density ρ), which implies the existence of a
conduction current J = ρv′ there. Therefore, the fol-
lowing interpretation is also possible: (1) J outside
M is a primary source for H in M ; (2) The effect of
J propagates with the finite light velocity according
to the special relativity, and generates Jd in M in a
retarded manner as a secondary source of H.
The difference between the primary and secondary

sources appears as

∇×H �= J , ∇×H = Jd, (7)

in M , and only Jd should be regarded as the source
of H from Faraday-Maxwell’s viewpoint of near field
interaction. The effect of distant J propagates as re-
tarded potentials: the retardation of both of a vector
and a scalar potential, A and φ, respectively.
The A generated by J outsideM satisfies eq. (8) at

a position in M , where c is observed:

∇2A =
1

c2
∂2A

∂t2
. (8)

In eq. (8), Lorentz’s gauge condition given by eq. (9) is

assumed, which guarantees the propagation of both
potentials with c:

∇ ·A = − 1

c2
∂φ

∂t
(9)

By subtracting ∇(∇ ·A) from both sides of eq. (8),

−∇2A+∇(∇ ·A) = − 1

c2
∂2A

∂t2
+∇(∇ ·A). (10)

The left-hand side of eq. (10) equals

−∇2A+∇(∇ ·A) = ∇× (∇×A) = μ∇×H. (11)

The first term in the right-hand side of eq. (10) is

− 1

c2
∂2A

∂t2
= − 1

c2
∂2(A(L) +A(T))

∂t2
, (12)

where ∇ × A(L) = 0 (longitudinal) and ∇ · A(T) = 0

(transverse). Since E can be decomposed into

E(L) +E(T) =

(
−∇φ− ∂A(L)

∂t

)
+

(
−∂A(T)

∂t

)
, (13)

the second term in the right-hand side of eq. (10) is

∇(∇ ·A) = ∇
(−1

c2
∂φ

∂t

)
=

1

c2
∂

∂t

(
E(L) +

∂A(L)

∂t

)
.

(14)
By summing up eqs. (12) and (14) with εμ = 1/c2, the
right-hand side of eq. (10) is turned into

1

c2
∂

∂t

(
E(L) +E(T)

)
= μ(Jd(L) + Jd(T)). (15)

Finally, eq. (10), using eqs. (11) and (15), leads to

∇×H = Jd(L) + Jd(T) = Jd. (16)

Both of Jd(L) and Jd(T) act as secondary sources of
H, and there is no reason to exclude Jd(L) from the
viewpoint of special relativity.

The author appreciates useful discussion with Dr. Kiyoshi
Maruyama with regard to the displacement current.
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