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1. Introduction 

Elastic constants are important physical 
quantities in materials science and solid-state 
physics because they reflect the interatomic potential 
of materials, and are essential parameters in 
designing structures. Resonant ultrasound 
spectroscopy (RUS) has been recognized as a 
superior method for measuring all independent 
elastic constants1–3). In principle, RUS allows us to 
determine them in two steps: first, one performs a 
measurement of a number of free-vibration 
resonance frequencies of a specimen, and second, 
one performs an inverse calculation for a set of Cij, 
which reproduces the measured resonant frequencies 
using the initial guesses of  Cij. However, obtaining 
reliable Cij through the inverse calculation relies 
heavily on initial guesses that are sufficiently close 
to the true values, which is a very difficult task. In 
addition, the presence of missing resonant modes in 
the measurement makes the mode identification in 
the inverse calculation labyrinthine. 
Misidentification of the measured and calculated 
resonance frequencies results in an erroneous 
convergence of the inverse calculation, which leads 
to a physically meaningless result. 

To overcome these problems, we propose a 
deep-learning (DL) method for determining the set 
of Cij without the need for mode identification, and 
demonstrate its applicability to the class of cubic 
solids. 
2. Method 
2.1 Elasticity images 

In this study, we develop a DL scheme 
specifically for cubic solids. We assume the 
specimen shape to be a rectangular parallelepiped 
with a side ratio of 3:4:5. This shape, considered 
generic in the field, is often used in performing RUS 
measurements because degeneracy of resonant 
modes is less likely to occur. A rectangular 
parallelepiped with sides of length 3, 4 and 5 mm 
parallel to the cubic crystal axes is taken as a 
reference specimen. 

Our proposed method relies on the creation of 
elasticity images from resonance frequencies and 
extracting elastic constant values from them through 

deep-learning image recognition. We employ the 
parameter ,  

 
 ,              (1) 

 
for the elasticity image construction. Here,   and 

 denote the mass density and each free-vibration 
resonance frequency, respectively, and   denotes 
the mode number.   is the ratio of the specimen 
volume under investigation to that of the reference 
specimen.  

To construct the elasticity image, we assume 
two conditions apply to . First, the range of  is 
taken from 100 to 13000 TPa/m2. The lower limit 
(100 TPa/m2) is set because the fundamental 
frequencies of softer materials give  values close 
to this value, indicating that it can include the 
fundamental frequencies of most materials. Second, 
up to 100 resonant frequencies within the range of  
are used for the elasticity image. We divide the range 
of   values evenly into 900 intervals, and assign 
binary information in each, indicating the presence 
or absence of a resonance mode. We convert this 
one-dimensional data into a three-layer elasticity 
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Fig. 1 (a) Construction procedure of the three-layer 
RGB elasticity image, and (b) the image for the 
case of Cu. 
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image with 30 30 = 900 pixels, as shown in Fig. 1 
(a). The example of an image corresponding to Cu is 
shown in Fig. 1 (b). 
2.2 Dataset preparation and prediction scheme 

To prepare the training datasets, we utilize the 
Blackman diagram to restrict the elastic constant 
range to be considered. It is known that actual cubic 
materials lie on the Blackman diagram4,5), as shown 
in Fig. 2(a). No natural materials occupy the lower 
right part in the diagram because this area takes a 
negative Poisson’s ratio. Therefore, only the shaded 
area is considered for preparing the DL training 
datasets. We divide the Blackman diagram into 12 
classes at each C11, as shown in Fig. 2(b). Choosing 
the value of C11 from 50 to 450 GPa in a 25 GPa 
increments, the total number of classes is 204. 

Our scheme consists of two steps. First, an 
input elasticity image is classified into one of the 204 
classes using a pre-trained convolutional neural 
network. Second, the input elasticity image is fed to 
a regression network to predict the set of Cij in the 
vicinity of the classes indicated in the first 
classification step. 
3 Results 

We first investigated the tolerance of this 
method to the presence of missing modes for the case 
of Si with up to 10 missing modes. The predicted 
values without missing modes are shown in Table I. 
The accuracy decreases on increasing the number of 
missing modes. The errors in C11, C12 and C44 with 
six missing modes are 6, 11 and 2%, respectively, 
and those with ten missing modes are 8, 11 and 3%, 
respectively. The prediction accuracy does not differ 
significantly for the case of six to ten missing modes, 
even though the dataset did not contain those values, 
indicating that our method has sufficient stability 
against missing modes. Our method also exhibits 
tolerance to dimensional errors: we varied the 
longest dimension of 5 mm from 0 to 2%, and the 
predicted value did not change significantly for any 

choice of dimensional error. These results indicate 
that our method shows sufficient robustness to errors 
that could occur in RUS experiments. 

We investigated the prediction accuracy of 
this method for 110 real materials with up to 9 
missing modes. The prediction error is ~5% for the 
case of five missing modes. Table I shows the 
predicted values for Al, Cr, Cu and Si without 
missing modes. 

Finally, we discuss the potential of this cubic 
method for lower symmetry materials: we also study 
hexagonal materials, which have five independent 
elastic constants. Elasticity images of hexagonal 
materials were substituted into the cubic network and 
used to predict the sets of cubic Cij. Then we 
converted the output cubic Cij and their original 
hexagonal Cij to equivalent isotropic values using the 
Hill approximation and compared them. Both agreed 
with sufficient accuracy, indicating the applicability 
of our method to lower symmetry materials. 
4 Conclusions 

In conclusion we propose a method for 
determining three independent elastic constants of 
cubic materials using free-vibration resonant 
frequencies by constructing convolutional neural 
networks without performing inverse calculations. 
We convert the resonant frequencies to an elasticity 
image, and make training datasets within the 
Blackman diagram. The elasticity image is robust to 
missing resonant modes and to specimen 
dimensional errors. The prediction accuracy is 
examined using 110 existing cubic materials, 
showing ~5% error or less in the elastic constants. 
The method can also be applied to determining the 
average Young’s modulus of hexagonal solids, 
suggesting that our proposed elasticity images 
faithfully reflect material elastic properties. 
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Fig. 2 (a) Blackman diagram for cubic materials. 
(a) Open circles are reported elastic constants for 
110 materials. Red curves indicate the Poisson 
ratio and the broken line indicates the isotropic 
material case. We have shaded the datasets area. 
(b) Solid dots and their error bars denote the areas 
for each class of dataset for different values of C11. 
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Table I  Predicted elastic constants Cij (GPa) 
without missing modes. 

 

C 11 C 12 C 44 C 11 C 12 C 44

Al 116 71 27 113 67 28
Cr 348 69 91 350 68 101
Cu 177 133 78 168 121 75
Si 164 63 75 166 64 80

Predicted values Reported values


