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1. Introduction
The finite-difference time-domain (FDTD) 

method has simple schemes for approximating space 
and time derivatives of fields with discretized field 
values at grid points. For analysis of elastic waves 
propagating in solids by the FDTD method, we
choose the grids from standard staggered grids 
(SSG),1) Lebedev grids (LG),2-4) rotated staggered 
grids (RSG),5) or staggered grids with the collocated 
grid points of velocities (SGCV).6-8) In FDTD 
analysis with SSG, RSG and SGCV for anisotropic 
media, interpolations of the velocity and stress 
component values off the grid points are required in 
general. However, in the LG, without these 
interpolations the FDTD scheme runs because
velocity-vector and stress component gird points are 
at the center and four vertices of an LG cell and the 
centers of four LG cell edges, respectively. FDTD 
analyses of elastic wave propagation in isotropic and 
anisotropic infinite media have demonstrated
validity and usefulness of the LG. In addition, a
source distribution issue of a point source was
overcome. 3,4) However, the stability of the LG
models with free boundaries have not been examined.

In this paper, we presented a stable LG and 
SSG models of free boundaries in two dimensions. 
The stability and validity of these models were 
demonstrated by computing resonant frequencies of 
a Lamé resonator on a quartz plate in the finite-
difference frequency-domain (FDFD) method for 
elastic waves with ignoring piezoelectricity of quartz.
In addition, we show that the LG model in this FDFD 
analysis gives degenerate eigenvalues.
2. Stable LG Models of Free Boundaries

We consider a Lamé resonator on a quartz 
plate with Euler angles and side 
length along x and y axes of and 
on x-y plane in vacuum in two dimensions

 . 7,8) Here, we used the Bechmann’s 
constants and ignored the piezoelectricity. The 
frequency of the fundamental Lamé-mode   is 
approximately [Hz] and the

components of the stiffness being zero are
( i =1, 2, 3, 4 ).

Figure 1 shows stable SSG and LG models of 
free boundaries. We can compute velocities ( )

in the free 
boundaries by the stress imaging technique and the 
stress free conditions, respectively.7,8) For a stable
SSG model, a rearranged SSG is developed: and 

grid points are collocated on the same grid points
for avoiding the interpolations off grid points 
because an SSG model in two dimensions that is a 
projection of the SSG in three-dimensional space,
which has three staggered control volumes for each 
velocity component in the x, y, and z-axes, onto the 
x-y plane are not stable8). We can see that two 
staggered SSG models compose an LG model. 
Therefore, we expect that a point source in an LG 
model excites elastic fields in one of staggered SSG 
models in the FDTD analysis. In FDFD analysis, LG 
model yields degenerate modes.
3. Stability Analysis of FDTD Models

We used von Neumann stability analysis of 
FDTD models: applying central difference 
approximation with the second order accuracy to the 
spatial derivatives in Newton’s translational 
equation of motion and the strain-displacement 
relation with the elastic constitutive equation, we 
have an equation:

where  is the Courant number,  , 
, and are time, a field 

(b) SSG
Fig. 1 Stable SSG and LG models of free boundaries.

(a) LG
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column vector composed of two column vectors, 
velocity column vector  and stress-tensor 
column vector  with discretized field values at 
all grid points, the normalized matrix of finite 
difference spatial operator, and a time interval. Here, 
the superscript  and T denote the values at the 
time   and transpose of the column vector. 
We used  with   being the 
maximum value of the stiffness components.  

Assuming that the elastic fields are time-
harmonic fields with angular frequency , we have 

 . Hence, we can derive an 
eigenvalue problem from (3) as follows: 

where (  and  are the eigenvalue and the 
eigenvector of the matrix .  

Using the second order approximation of the 
time derivative in (3), 

, we have a quadratic 
equation for : 

. The solutions of this equation are: 

      .  (5) 

If FDTD fields are stable.  
Hence, the FDTD model is stable when all 

computed eigenvalues   of A in (4) are 
 and . 

4. Numerical Results 
We divide the resonator into unit cells 

or rectangular elements whose sides have identical 
length,  and , where . 

Figure 2 shows distributions of eigenvalues of 
(4) by the FDFD method with . The maxima 
of real parts of eigenvalues, max , with 
LG and SSG models are smaller than   and 

 , and max   is the same 
value of 2.84434. Hence, we may conclude that two 
FDTD models are stable.  

Table 1 shows the computed results  for 
the lowest five modes. The SSG result and one of the 
LG results are the same in six digits for the lowest 
five modes. Their field distributions at the grid points 
belong to the SSG model are also the same and the 
distributions at other grid points of the LG models 
have sufficiently small amplitude to identify as a 
distribution on another SSG model. Hence, we can 
confirm that the presented LG model is composed of 
staggered SSG models and the mode field 
independently exists in each SSG model. 

Figure 3 shows dependence of   on the 
value of N where  is computed result of . We 

also presented FDFD results with SGCV models8) 
and FEM results with linear rectangular elements 
(four nodes) and serendipity rectangular elements 
(eight nodes). We can see that computed results of 
LG and SSG are the same values, errors of four node 
FEM analysis almost equal to SGCV results at the 
same N, and the errors are larger than the LG results. 
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FEM LG SSG SGCV 4 nodes 8 nodes 

2412.42 2411.84 2411.60 2411.60 2412.60 
  2411.60   
2383.95 2383.30 2383.27 2382.50 2383.61 
  2382.50   
2325.79 2325.06 2325.02 2325.02 2325.38 
  2324.16   
2251.74 2251.50 2251.28 2251.27 2251.32 
  2251.27   
1724.92 1724.73 1724.57 1724.54 1724.57 
  1724.54   

 

(a) LG         (b) SSG 
Fig.2 Eigenvalue distributions computed by FDFD 

method with LG and improved SSG models. 

Fig.3 Dependence of computed  for the 
fundamental Lamé mode, on the number of divisions . 

Table 1 Computed results of . 


