Analysis of propagation and resonance properties of longitudinal leaky SAW on LiNbO₃/SiC structure

Ryo Takei^{1‡}, Masashi Suzuki¹, Shoji Kakio^{1*}, and Yasushi Yamamoto² (¹Univ. of Yamanashi; ²Yamamoto-ADEC LLC)

1. Introduction

High-performance surface acoustic wave (SAW) devices with characteristics such as high frequency, large bandwidth, and high *Q*-factor are required. Longitudinal leaky SAWs (LLSAWs) have high phase velocity, making them advantageous for use in higher frequency SAW devices. However, no effective resonance response of LLSAW appears on a single substrate, such as LiTaO₃(LT) or LiNbO₃(LN), owing to large attenuation. Our group reported that the attenuation of LLSAWs can be reduced by bonding LT or LN thin plates to a support substrate with a higher phase velocity than that of thin plates such as quartz, sapphire, and diamond.¹⁻³

However, because SiC has a high phase velocity and thermal conductivity, it can be utilized as a support substrate for LLSAWs,⁴⁾ and high-frequency and high-power handling performance SAW devices can be expected.

In this study, the propagation and resonance properties of LLSAWs on a bonded structure comprising an LN thin plate and a SiC support substrate (LN/SiC) are theoretically investigated.

2. Calculation of propagation properties

We calculated the propagation properties (phase velocity, attenuation, and electromechanical coupling factor (K^2)) of the LLSAW as a function of LN thin-plate thickness h/λ normalized by wavelength λ of the LN/SiC structure. For the piezoelectric thin plate, X36°Y-LN, which has a large K^2 for LLSAWs, was used, and the Euler angles (0°, 0°, 0°) of the 4H-SiC support substrate were used.

Figures 1(a)–1(c) show the propagation properties of LLSAW on the X36°Y-LN/4H-SiC as a function of h/λ obtained from analytical calculation. In Figs. 1(a) and 1(c), the plots show the phase velocity and effective electromechanical coupling factor ($K_{\rm eff}^2$) obtained from the resonance properties analyzed by the finite element method (FEM), which is described later.

As shown in Fig. 1(a), the phase velocity decreased as h/λ increased for both the free and metallized surfaces that were slower than those analyzed by the FEM. As shown in Fig. 1(b), the attenuation showed the minimum value (7.4 × 10⁻⁶ dB/ λ) at h/λ =0.161, with a phase velocity of 7,800 m/s.

Fig. 1 Calculated propagation properties, (a) phase velocity, (b) attenuation, and (c) K^2 , of LLSAW on X36°Y-LN/4H-SiC.

The attenuation disappeared at a certain h/λ , where the phase velocity of the LLSAW was lower than the bulk shear wave velocity of 4H-SiC (7,126 m/s). As shown in Fig. 1(c), K^2 exhibited an apparent maximum value (36%) at $h/\lambda=0.30$; this might be because of the phase velocity of the free surface approaching that of the 4H-SiC bulk shear wave. The maximum reliable K^2 was 22%, obtained as K_{eff}^2 using the FEM.

3. Simulation of resonance properties

We analyzed the resonance properties of the LLSAW using the FEM in the case of forming an infinitely periodic interdigital transducer (IDT) with

[†]g23te016@yamanashi.ac.jp, *kakio@ yamanashi.ac.jp

Fig. 3 Simulated resonance properties on X36°Y-LN/4H-SiC.

a period λ of 10.0 µm and an Al thin film. A perfect matching layer was provided at the bottom of the support substrate with a 10 λ thickness. Material Q was not considered.

Figure 2 shows the fractional bandwidth (FBW) of the LLSAW as a function of h/λ . Al electrode film thickness $h_{\rm Al}/\lambda$, normalized by wavelength λ , was used as the parameter. As h/λ increased, the FBW increased and reached the maximum value at the range of $h/\lambda=0.3-0.4$ for most $h_{\rm Al}/\lambda$. The red line in Fig. 3 shows the resonance property of the LLSAW with an FBW of 9.02% and admittance ratio (AR) of 192 dB for $h_{\rm Al}/\lambda=0.06$ and $h/\lambda=0.30$. The horizontal axis in Fig. 3 is converted to phase velocity by multiplying frequency by λ . The response of the LLSAW at 6,200-6,900 m/s was significantly stronger than that of a single LN (black line). For the LLSAW at $h/\lambda=0.39$, the FBW was 9.53%. However, in addition to the main response of the LLSAW, a spurious response owing to its higherorder mode, appeared near the antiresonance.

Figure 4 shows the resonance properties for $h_{\rm Al}/\lambda=0.06$ and $h/\lambda=0.30$ with the third Euler angle (ψ) of the LN thin plate as a parameter. As ψ increased, the spurious responses owing to Rayleigh-

Fig. 4 Simulated resonance properties with the third Euler angle (ψ) of the LN thin plate.

type SAW and leaky SAW around 4,500 m/s were reduced and reached a minimum at ψ =62°; however, the *FBW* of the LLSAW decreased to 6.51%, and a spurious response appeared at 7,100 m/s. For ψ =45°, the *FBW* was 9.05%, and the spurious response at 7,100 m/s remained small. Moreover, as the second Euler angle (θ) of the SiC support substrate increased from 30° to 55° under the same conditions, the spurious response owing to the LLSAW higher-order mode at 7,700 m/s was reduced.

From the above results, when ψ of the LN thin plate and θ of the SiC support substrate were set to 45° and 40°, respectively, both spurious responses were weakened while maintaining the strong response of the LLSAW, as shown in Fig. 3.

4. Conclusions

In this study, the propagation and resonance properties of the LLSAW on a bonded structure comprising an X36°Y-LN thin plate and a 4H-SiC support substrate were theoretically investigated. Notably, the strong LLSAW response was obtained at h/λ where the phase velocity of the LLSAW was slower than that of the bulk shear wave of 4H-SiC, and the *FBW* of 9–10% was obtained under conditions for $h_{Al}/\lambda=0.06-0.07$ and $h/\lambda=0.30-0.40$. Moreover, the spurious responses were weakened by optimizing ψ of the LN thin plate and θ of the SiC support substrate. In future studies, we will experimentally investigate such bonded structures.

References

- 1) M. Gomi, *et al.*, Jpn. J. Appl. Phys. **56**, 07JD13 (2017).
- J. Hayashi, *et al.*, Jpn. J. Appl. Phys. 58, SGGC12 (2019).
- 3) N. Hara, *et al.*, Jpn. J. Appl. Phys. **62**, SJ1056 (2023).
- 4) P. Zheng, *et al.*, Proc. IEEE MEMS, p. 1030 (2022).