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1. Introduction 

Numerous studies have explored the 
application of thermoacoustic phenomena to develop 
new systems [1-16], including those utilizing unused 
energy and innovative cooling systems. Enhancing 
energy conversion efficiency and exploring the 
feasibility of operating the system at lower 
temperature differences are crucial for realizing 
these systems. It has been proposed by us and 
succeeded in improving the energy conversion 
efficiency and low temperature difference drive [8-
12, 14-16]. However, the detailed principles of the 
PA are still being investigated. While previous 
research has focused on cylindrical PAs, few studies 
have examined the impact of PAs with different 
cross-sectional shapes on the system. This paper 
concentrates on the aperture cross-section of the PA, 
comparing a conventional cylindrical PA with a 
Semilunar Phase Adjuster (SPA) [14] that possesses 
a semilunar cross-sectional shape and a similar 
aperture area. The locations of the SPA and PA were 
studied using stability analysis [5,6,11,14]. 
 
2. SPA (Semilunar Phase Adjuster) 

This paper proposes a Semilunar Phase 
Adjuster (SPA) [14]. It differs from conventional 
cylindrical PAs in that it has a semilunar cross-
sectional shape. A photograph of the SPA and a PA 
with an inner diameter of approximately 30 mm 
when installed in a system tube is shown in Figure 1 
[14]. Local tube reduction in a thermoacoustic 
system increases the particle velocity in the tube, but 
there are few studies on its effect on the system in the 
cross-sectional shape of the tube. This paper 
discusses the effect of the installation position of a 
semilunar phase adjuster (hereafter referred to as 
SPA), which has approximately the same cross-
sectional area as a PA with an inner diameter of 30.1 
mm (hereafter referred to as Φ30PA), on a loop tube 
thermoacoustic system, using a stability analysis. 

 
 

 

Fig.1 SPA(left) or PA of inner diameter 30 mm 
(right) installed in the tube. [14] 
 
3. Stability Analysis for installation position of 
semilunar 

SPA and Φ30PA have the same aperture cross 
section. Currently, stability analysis using the 
transfer matrix method [5,6,11,14] cannot 
distinguish between SPA and Φ30PA based on the 
shape of the cross section. Therefore, in this paper, 
stability analysis was performed assuming that SPA 
and Φ30PA are equivalent. The total system length 
and pipe inner diameter were set to 3.3 m and 42.6 
mm, respectively, and the working fluid in the pipe 
was atmospheric air at 0.1 MPa. The stack was 50 
mm long with a channel diameter of 0.75 mm and a 
porosity of 900 cells/inch2 with a porosity of 0.856. 
The inner diameter of the PA was 30.1 mm and its 
length was 45 mm because the SPA and Φ30PA are 
equivalent. The part of the stack where the 
temperature decreases continuously from the high-
temperature end of the stack to the temperature 
inside the resonance tube is defined as the thermal 
buffer tube. The temperature distribution in the 
thermal buffer tube and the stack was assumed to be 
linear.  

The results of the analysis are shown in Figure 
2 [14], and show that the onset temperature differs 
depending on the position of the PA. 600 K is 
reached at around 0.7 m, and the onset temperature 
decreases in a convex shape. The onset temperature 
was 600 K again at 1.7 m, and then it decreased in a 
convex shape downward from there. The 
temperatures between 0.9m and 1.5m and between 
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2.4m and 3.0m were almost flat with little change. 
There were two points at which the minimum onset 
temperature was reached. At 1.175 m, the onset 
temperature was about 388 K, and at 2.850 m, the 
onset temperature was about 386 K. The difference 
between the two points was 2 K, and the difference 
between the two points was about 1 K. The onset 
temperature of the PA at 1.175 m was about 388 K, 
and the onset temperature of the PA at 2.850 m was 
about 386 K. The difference between the two points 
was about 2 K, and the onset temperature of the PA 
at 2.850 m was about 386 K. 

Fig.2 Onset temperature results for position of PA in 
the stability analysis onset temperature results of 
SPA and Φ30PA. [14] 
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